

Wolfspeed SiC Gen 4 MOSFET

Description

This is Wolfspeed's 4th generation of high-performance silicon carbide MOSFET in a package less bare die format to be implemented into any custom module design. The high blocking voltage with low on-resistance, high speed switching with low capacitance makes this MOSFET ideal for high frequency switching applications including solar inverters and uninterrupted power supplies.

Package Types: Bare Die PN's: CPM4-0230-0255ES0A

Features

- 4th Generation SiC MOSFET
- High blocking voltage with low on-resistance
- High speed switching with low capacitance
- Fast intrinsic diode with low reverse recovery

Typical Applications

- UPS
- Renewable Energy (Central Solar and Wind)
- Medium Voltage Drives
- Smart Grid

Absolute Maximum Ratings

Stress beyond those listed under absolute maximum ratings may damage the device.

Parameter	Symbol		Rating	Unit
Drain-Source Voltage, across T _{VJ}	V _{DS(max)}		2300	V
Maximum Gate-Source Voltage, Peak Transient Capability	VGS(max)		-8/+19	V
Continuous Drain Current, V_{GS} = 15 V, assumes die packaged in TO-247 package with $R_{th(j-c)}$ < 0.27 K/W	Го	T _c = 25°C	83	A
		T _c = 100°C	58	
Pulsed Drain Current, t _p limited by T _{VJ(max)}	I _{D(pulse)}		166	А
Virtual Junction and Storage Temperature	T _{VJ} , T _{stg}		-55 to +175	°C
Maximum Processing Temperature, in non-reactive ambient	T _{proc}		325	°C

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Recommended Operating Gate-Source Voltage	$V_{GS(op)}$	-4 / +15	V

Electrical Characteristics (T_{VJ} = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain-Source Breakdown Voltage	V _{(BR)DSS}	2300			V	$V_{GS} = 0 \text{ V, } I_D = 100 \mu\text{A}$
	.,	1.8	2.5	3.6	V	V _{DS} = V _{GS} , I _{DS} = 19 mA
Gate Threshold Voltage	V _{GS(th)}		2.2	V		V _{DS} = V _{GS} , I _{DS} = 19 mA, T _{VJ} = 175 °C
Zero Gate Voltage Drain Current	I _{DSS}		1		μА	V _{DS} = 2300 V, V _{GS} = 0 V
Gate-Source Leakage Current	I _{GSS}		10		nA	V _{GS} = 15 V, V _{DS} = 0 V
Drain-Source On-State Resistance	В		30	39		V _{GS} = 15 V, I _D = 69 A
Drain-Source On-State Resistance	R _{DS(on)}		87		mΩ	V _{GS} = 15 V, I _D = 69 A, T _{VJ} = 175°C
Transcanductores	6		50		- s	V _{DS} = 20 V, I _D = 69 A
Transconductance	Gfs		46			V _{DS} = 20 V, I _D = 69 A, T _{VJ} = 175°C
Input Capacitance	C _{iss}		6			V _{GS} = 0 V, V _{DS} = 1500 V
Output Capacitance	Coss		102		pF	f = 100 kHz
Reverse Transfer Capacitance	Crss		10			V _{AC} = 25 mV
Coss Stored Energy	Eoss		113		μJ	V _{DS} = 1500 V, f = 100 kHz
Internal Gate Resistance	R _{G(int)}		10		Ω	f = 100 kHz, V _{AC} = 25 mV
Gate to Source Charge	Q _{gs}		46			V _{DS} = 1500 V, V _{GS} = -4 V/ +15 V
Gate to Drain Charge	Q _{gd}		39		nC	I _D = 69 A
Total Gate Charge	Qg		147			

Reverse Diode Characteristics (T_{VJ} = 25°C)

Characteristics	Symbol	Тур.	Max.	Unit	Test Conditions
Diada Camusad Valtaga	V	5.5		V	$V_{GS} = -4 \text{ V}, I_{SD} = 35 \text{ A}$
Diode Forward Voltage	V _{SD}	4.9		V	V _{GS} = -4 V, I _{SD} = 35 A, T _{VJ} = 175 °C
Reverse Recovery Time	t _{rr}	16		ns	V _{GS} = -4 V, I _{SD} = 35 A, V _R = 1500 V dif/dt = 3.5 A/ns, T _{VJ} = 175 °C
Reverse Recovery Charge	Qrr	256		nC	
Peak Reverse Recovery Current	I _{rrm}	28		Α	unifut = 3.3 Afris, 100 = 173 C

Typical Performance

All the graphs are based on a die placed in a TO-247-4L package.

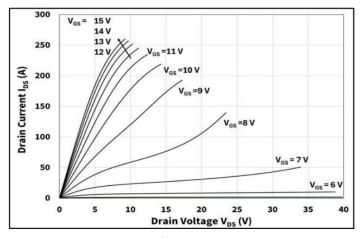


Figure 1.

Output Characteristics T_{VJ} = -55 °C

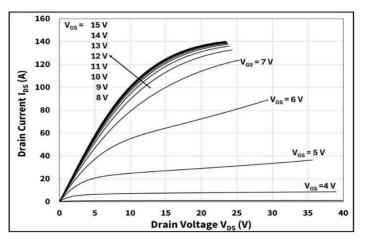


Figure 3.

Output Characteristics T_{VJ} = 175 °C

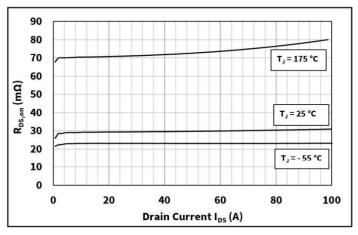


Figure 5.

On-Resistance vs. Drain Current for Various Temperatures

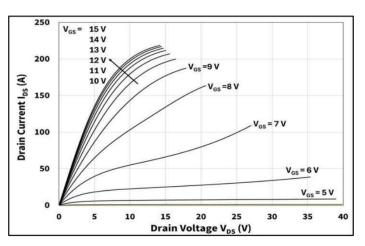


Figure 2.

Output Characteristics T_{VJ} = 25 °C

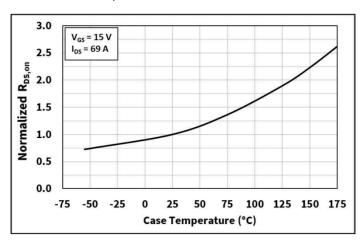


Figure 4.

Normalized On-Resistance vs. Temperature

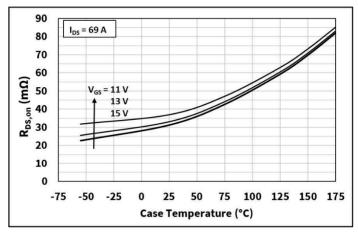


Figure 6.

On-Resistance vs. Temperature for Various Gate Voltages

Typical Performance

All the graphs are based on a die placed in a TO-247-4L package.

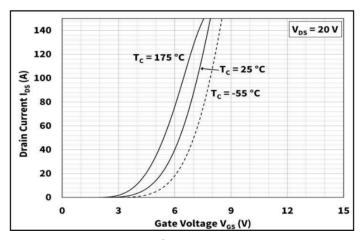


Figure 7.

Transfer Characteristic for Various Junction Temperatures

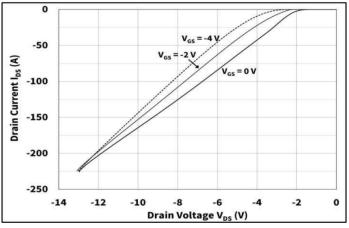


Figure 9.

Body Diode Characteristic at T_{VJ} = 25 °C

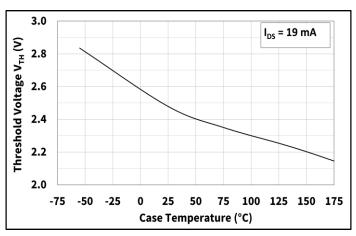


Figure 11.

Threshold Voltage vs. Temperature

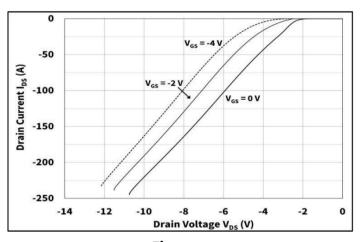


Figure 8.

Body Diode Characteristic at TvJ = -55 °C

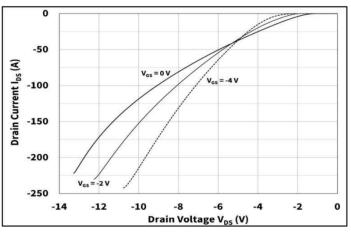


Figure 10.

Body Diode Characteristic at T_{VJ} = 175 °C

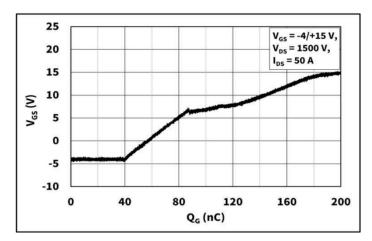


Figure 12.

Gate Charge Characteristics

Typical Performance

All the graphs are based on a die placed in a TO-247-4L package.

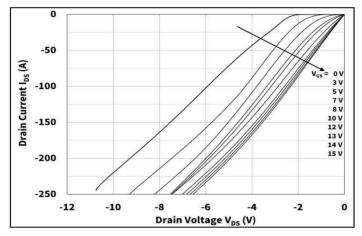


Figure 13.

3rd Quadrant Characteristic at T_{VJ} = -55 °C

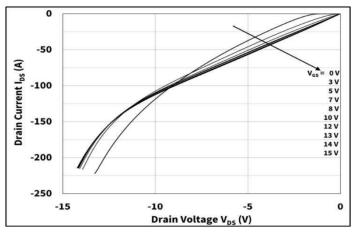


Figure 15.

3rd Quadrant Characteristic at T_{VJ} = 175 °C

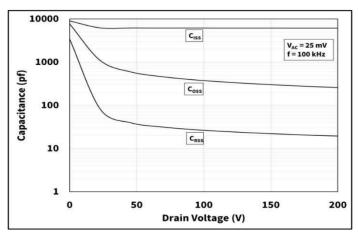


Figure 17.

Capacitances vs. Drain-Source Voltage (0-200V)

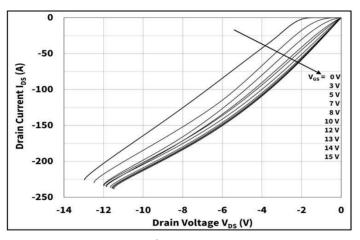


Figure 14.

3rd Quadrant Characteristic at TvJ = 25 °C

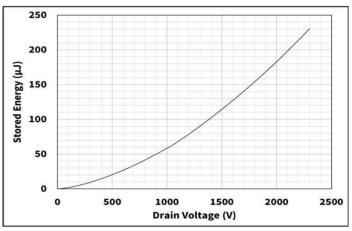


Figure 16.

Output Capacitor Stored Energy

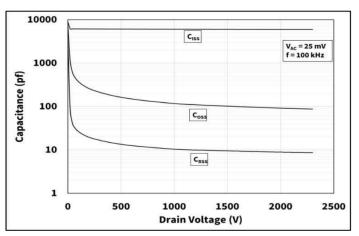
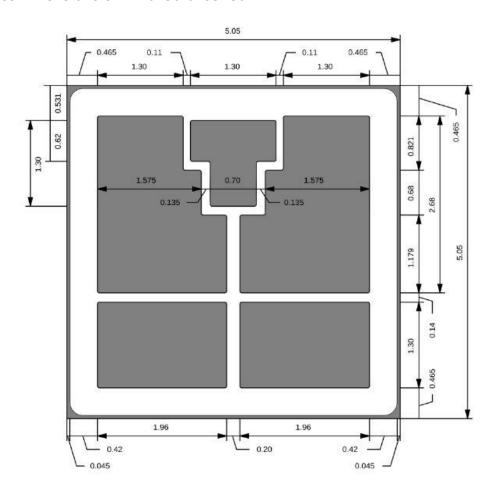



Figure 18.

Capacitances vs. Drain-Source Voltage (0-2300V)

6

Product Dimensions CPM4-0230-0255ES0A

Product Dimensions CPM4-0230-0255ES0A

Parameter	Typical	Units
Die Size (L x W)	5.05 x 5.05	mm
Exposed Source Pad Metal Dimensions	1.96 x 1.30 (x 2)	mm
Exposed Source Pad Metal Dimensions	1.96 x 1.18 (x 2), 1.58 x 0.68 (x 2), 1.3 x 0.82 (x 2)	mm
Gate Pad Dimensions	1.3 x 0.62, 0.68 x 0.70	mm
Chip Thickness ¹	180	μm
Frontside (Source) metalization (Al)	4	μm
Frontside (Gate) metalization (Al)	4	μm
Backside (Drain) metalization (Ni:Pd:Au)	0.6/0.2/0.1	μm

¹ SiC wafer thickness

Product Ordering Information

Order Number	Description	Package	
CPM4-0230-0255ES0A-GQ8	2300V/30mΩ SiC MOSFET G4 IND UV MVF	Bare Die Product	

Revision History

Revision History	Date of Change	Brief Summary
1	1/21/2025	Initial Release

Notes & Disclaimers

WOLFSPEED PROVIDES TECHNICAL AND RELIABILITY DATA, DESIGN RESOURCES, APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, WITH RESPECT THERETO, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

The information contained in this document (excluding examples, as well as figures or values that are labeled as "typical") constitutes Wolfspeed's sole published specifications for the subject product. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for informational purposes only. Any examples provided herein have not been produced under conditions intended to replicate any specific end use. Product performance can and does vary due to a number of factors.

This product has not been designed or tested for use in, and is not intended for use in, any application in which failure of the product would reasonably be expected to cause death, personal injury, or property damage. For purposes of (but without limiting) the foregoing, this product is not designed, intended, or authorized for use as a critical component in equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment; air traffic control systems; or equipment used in the planning, construction, maintenance, or operation of nuclear facilities. Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation (1) selecting the appropriate Wolfspeed products for the buyer's application, (2) designing, validating, and testing the buyer's application, and (3) ensuring the buyer's application meets applicable standards and any other legal, regulatory, and safety-related requirements.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power